“水のワイヤー”は本当にある?──長らく幻とされた理由

私たちの身近にある水は、単に液体や氷として存在しているだけでなく、実は分子同士が幾重にも結びついて複雑なネットワークを形作っています。
その結び目となっているのが「水素結合」という力です。
この水素結合を介して水分子が一直線に並ぶと、“水のワイヤー”と呼ばれる鎖のような構造が生まれると考えられてきました。
ちょうど電線が電気を運ぶように、このワイヤーはプロトン(陽子)や電子などを効率的に伝える通路の役割を担うのではないかとも言われています。
なぜ「分子のワイヤー」がこれほど注目されるのかというと、生体や化学反応の場面でエネルギーや情報を運ぶうえで重要な仕組みとされているからです。
たとえば私たちの細胞内では、酵素や膜タンパク質によってプロトンを受け渡すプロセスが行われますが、その際に水のワイヤーが一時的に形成されると指摘されています。
分子同士が細長く連なることで、信号やエネルギーがスムーズに移動し、効率的な反応や情報伝達が実現しているのかもしれません。
とはいえ、この“分子レベルの電線”を直接見るのは容易ではありません。
液体の水では分子が絶えず動き回り、水素結合が切れたり再結合したりするため、特定のワイヤー構造が固定されにくいのです。
さらに氷の状態でも、わずかな乱れやプロトンの配列の違いによって、分子鎖の向きが崩れてしまいます。
しかも、従来の散乱実験やコアレベル分光では分子単体に焦点が当たりやすく、水素結合ネットワーク全体を正確に捉えるのは難しいとされていました。
そこで今回研究者たちは、多体理論を駆使した精密なシミュレーションと、短波長の真空紫外領域(8 eV付近)に近いエネルギーの光を用いた吸収分光法を併用し、水分子同士の電子と正孔(せいこう)のやりとりを詳細に調べることにしたのです。
実験データの一部は既存の成果も活用しつつ、新たな理論計算(GW-BSE法)を突き合わせることで、液体と氷でのワイヤー形成をより鮮明に描き出そうとしています。