artificial-intelligence

機械学習の失敗が科学に「再現性の危機」をもたらしているかもしれない (2/2)

2019.02.18 Monday

前ページ「機械学習」はどこまで信用できるのか

<

1

2

>

「再現性の危機」を救うために

アレン博士は、ヒューストンにあるベイラー医科大学の生物医学研究者グループとともに、研究の信頼性を向上させることに取り組んでいます。彼女は、次世代の機械学習や統計技法の開発しようとしているのです。これが実現すれば、パターンを発見するためにシステムが多くのデータを調べるだけでなく、その結果の不確実性や再現性が確認できるようになります。

アレン博士は、「新たなシステムを実現させるための膨大なデータセットを収集するには、驚くほどコストがかかります。しかし私は共に働く科学者らに対して、私たちがやっていることは研究よりも時間がかかることかもしれませんが、最終的には長く使われ続けるものとなるでしょうと伝えています」と語っています。

人間の介入が少ない機械学習は確かに画期的なものかもしれませんが、出された結果が正しいかどうかを人間が判断できなければ意味がありません。これからさらに活用が増えていくであろう機械学習をさらにアップデートするために、アレン博士がすすめる取り組みは非常に大きな意義を持つといえるでしょう。

AIは「万能の神」にあらず。数学者が「AIに決して解けない問題」を考案

reference: bbc / written by なかしー

<

1

2

>

コメントを書く

※コメントは管理者の確認後に表示されます。

人気記事ランキング

  • TODAY
  • WEEK
  • MONTH

Amazonお買い得品ランキング

AI・人工知能のニュースartificial-intelligence news

もっと見る

役立つ科学情報

注目の科学ニュースpick up !!