タンパク質って「お肉」以外に何があるの?
タンパク質と聞くと、多くの人は「お肉」を思い浮かべるでしょう。
確かにお肉には多くのタンパク質が含まれています。
しかし生物学でいうタンパク質と、食材のタンパク質とは少しだけ見方が異なります。
生物学では食材と違い、赤血球にある酸素を運搬する役割を持ったタンパク質や感染から守ってくれる抗体タンパク質、DNAを複製するコピータンパク質など、1種類ごとの分子レベルのタンパク質に焦点を合わせています。
分子レベルのタンパク質の形は、上の図が示すように、お肉とは似ても似つきません。
一見すると、規則性のない滅茶苦茶な塊にみえるでしょう。
しかしよく目をこらすと、タンパク質分子のあらゆる部分がひも状をしていることに気付くと思います。
たとえば一部を拡大すると、下の図のように1本のひもがらせん状の構造をとっていることがわかります。
他の部分も同様に拡大すると、やはり全てが1本のひもが複雑に畳まれたり絡んだりして構成されていることがわかります。
このひもの正体は、アミノ酸が延々と連なったものになります。
つまりタンパク質とはアミノ酸がつながってできたひもが、複雑に絡み合うことで作られているのです。
そしてアミノ酸の繋がる順番はDNAに刻まれています。
特にDNAの中で伝統的に「遺伝子」と呼ばれている部分に刻まれている部分は、ほぼ全てがアミノ酸の繋がる順番を記すものになっており、それ以外の情報の占める割合は僅かなものになっています。
DNAが生命の設計図と言われるのは、アミノ酸の順番を記しているからなのです。
しかしそうなると気になることが出てきます。
遺伝子に刻まれている情報はアミノ酸の順番だけなのに、どうしてタンパク質たちはあんな複雑な形に変化できるのでしょうか?
最も大きな要因の1つはアミノ酸自身が持つ多様な結合能力です。
アミノ酸は分子の各所にプラスが優勢な場所やマイナスが優勢な場所、水素結合を起こしやすい場所が存在しており、適切にアミノ酸を繋げるだけである程度、勝手に変形して、自分自身を複雑な形に組み上げてくれるのです。
(※他にもアミノ酸内部の原子には大きさに差があり、大きさの差によって可動域が限定され、組み上がりかたもそれに左右されます)
先に紹介したらせん状の構造も、アミノ酸たちが持つ結合作用による「芸術」の1つとなっています。
また重要な点として、細胞の中には、長くなったアミノ酸の列を適切な形に折りたたまれるように助けてくれる「折り畳みの介護人」のような機能をもったタンパク質も存在することも知られています。
このような介護の助けもあり、酸素と結合できる機能を持ったタンパク質(ヘモグロビン)や、ウイルスを見つけて攻撃するタンパク質(抗体)や、神経から送られてくる電気信号をもとに収縮するタンパク質(筋肉繊維の中のアクチンとミオシン)など、多様なタンパク質が作られるのです。
DNAは生命の設計図であることには変わりませんが、そこから機能を持ったタンパク質が複雑な形に変形できるまでには、多数のプロセスが必要になるわけです。
ですがこれは、タンパク質の研究を行っている研究者たちにとって「大問題」でした。
DNAに記されているアミノ酸の順番という情報だけをみても、最終的にどんな形のタンパク質ができあがるかが全く予想できなかったのです。
この危機を脱する唯一の手段は、高性能な顕微鏡のような仕組み(X線結晶構造解析やクライオ電子顕微鏡など)を使って、タンパク質の分子構造を1つ1つ解明することです。
しかしこの作業は非常に時間がかかり、1つのタンパク質の分子構造を解明するためには、数か月から数年もかかることがありました。
構造が複雑で解析が困難なものに至っては、十年以上もの年月が要されることもあります。
DNAの配列情報が解き明かせるようになっても、その生産物であるタンパク質の構造がわからなければ、生命現象を正しく理解することも、病気を治すタンパク質ベースの薬も作ることはできません。
DNAに刻まれたアミノ酸の順番の情報から、タンパク質の構造を予測するための様々なプログラムが開発されましたが、正確性に問題があるものばかりでした。
人間が人間のために作った設計図ならば、そこから製造物を予測するのは単純です。
しかしDNAに刻まれた生命の設計図を、人類はなかなか解読することができなかったのです。
ある技術が開発されるまでは……。