数学史の流れを変えた二人の日本人
ここで少しフェルマーの問題から離れ、戦後の日本に話しを移しましょう。
戦後の日本の数学界では、教授陣がすっかり疲れ果て、研究への気力を失っていました。
しかし若手数学者たちは熱意に溢れていて、コミュニティを作って互いに新しいアイデアについて話し合い、勉強していました。
そんな中に、フェルマーの最終定理解決の最重要人物となる二人の若手数学者が登場します。それが谷山豊(たにやま とよ)と志村五郎(しむら ごろう)です。
1955年、日光で数学国際シンポジウムが開かれます。
日本の若手数学者は自分たちの研究を世界に発信するチャンスだと、このシンポジウムの際に、アイデアをまとめたプリントを世界の研究者たちに配って意見を求めました。
その中に、谷山のある重要なアイデアも含まれていました。それが後に数学界に衝撃を与える重要理論「谷山-志村予想」の雛形となるものでした。
「すべての楕円曲線はモジュラーである」
それが谷山の主張した理論の内容です。
非常に簡潔な一文ですが、ほとんどの人には何を言っているのか意味がわからないでしょう。しかし、これは数学者から見ると思いもしなかった画期的なことを言っていたのです。
谷山はまるで映画にでも出てきそうな、ぼんやり型の天才だったと言われていて、靴紐なんていちいち結び直すのは馬鹿らしいからと結ばなかったそうです。
彼はひらめきが先行していたようで、それは数学で何より重要なことでした。
ただあまりに発想が飛躍しすぎていた谷山のアイデアは、このときほとんどの学者たちに「事実とは思えない」と受け入れてはもらえませんでした。
そして、残念なことに谷山はこのシンポジウムの開かれた3年後に自殺してしまいます。自殺の理由は不明です。
谷山の死後、その意志を引き継いだのは志村五郎でした。
志村は図書館で谷山と同じ本を借りようとした縁で知り合い、それ以来数学研究の盟友となっていました。
彼はなんとか、亡き友人のアイデアを形にしようと、その意味を死物狂いで理解し、アイデアを支える理論付けを行っていきます。
そして発表されるのが「谷山-志村予想」です。
数学における「予想」とは、限りなく真であると考えられるが証明はできていない命題につけられる呼び名です。「予想」が証明されるとそれは「定理」になります。
アンドリュー・ワイルズは「フェルマーの最終定理」を証明した人として世間で話題になりましたが、実はフェルマーの最終定理を直接証明したわけではありません。
ワイルズが成し遂げたのは、この「谷山-志村予想」の証明です。
「すべての楕円曲線はモジュラーである」このことを証明することで数世紀の間、世界の数学者の頭を悩ませ続けた「フェルマーの最終定理」の無限の証明が完了してしまったのです。
これは一体どういうことなのでしょうか?
次回はその意味について解説します。
後編の記事はこちら↓